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Measurements of the shear-stress variation along and the velocity profiles above a solid 
wavy wall bounding a turbulent flow are presented for waves with height-to-length 
ratios of 2a/h = 0.0312 and 0.05. These are compared with previous measurements of 
the wall shear stress reported by Thorsness (1975) and by Morrisroe (1970) for 
2a/h = 0.012. The investigation covered a range of conditions from those for which 
a linear behaviour is observed to those for which a separated flow is just being initiated. 

Pressure measurements indicate a linear response in that the spatial variation is 
described quite well by a single harmonic with a wavelength equal to that of the 
surface. However, the variation of 7w for waves with 2alh = 0.0312 and 0.05 can be 
more rapid on the leeward side of the wave. The degree of departure from a sinusoidal 
variation increases with increasing wave height and fluid velocity and, from the results 
reported in this paper, it is suggested that nonlinear behaviour will become evident 
when au*/v 27. 

Many aspects of the flow for all three waves are described by a solution of the linear 
momentum equations previously presented by Thorsness (1975) and by Thorsness & 
Hanratty (1977). These include the phase and amplitude of the pressure profile and 
the fist harmonic of the shear-stress profile and the velocity field outside the viscous 
wall region. 

These results suggest that up to separation the flow is approximated quite well by 
linear theory. Nonlinearities affect the flow only in a region very close to the wave 
surface and are manifested by the appearance of higher harmonics in the variation 
Of 7w. 

1. Introduction 
A wavy wall bounding a turbulent flow introduces disturbances which cause 

spatial variation of the shear and the pressure along the wave surface. Because of the 
importance of this interaction in determining wave generation on liquid surfaces, 
sediment transport and flow resistance, considerable attention has been given to the 
problem of predicting the wave-induced flow over a sinusoidally shaped boundary. 

For small enough wave amplitudes a linear response is obtained. This is evidenced 
by a sinusoidal spatial variation of the wall stress and by a spatially averaged wall 
shear stress equal to that for a flat surface. For larger amplitude waves the function 
describing the spatial variation of the wall stress will contain higher-order harmonics 
and the flow might separate from the leeward side of the wave. 
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Almost all of the theoretical research on turbulent flow over wavy surfaces has 
focused on the linear problem. The range of wave amplitudes over which such analyses 
can be expected to be valid is unknown and experimental measurements are needed 
both to define this range and to guide much needed theoretical work on flow over 
waves of finite amplitude. This paper presents results on the influence of waive ampli- 
tude on flow of a liquid over trains of sinusoidal waves with a wavelength h of 5-08 cm. 
The waves were located on one of the walls of a rectangular channel 5.08 cm high and 
60.96cm wide which was long enough that a fully developed turbulent flow was 
obtained. The Reynolds number Re based on the half-width of the channel h was 
varied from 3000 to 32000. Measurements were made of the variation of the shear stress 
and pressure along the wave surface and of the time-averaged velocity in the direction 
of mean flow. Measurements were also made of the turbulent velocity fluctuations, but 
these will be reported in another paper. 

In  a previous investigation in this laboratory (Thorsness 1975; Thorsness & 
Hanratty 1977) it was found that a linear response is obtained in this apparatus 
with waves having a height-to-wavelength ratio 2a/h = 0.0125, where a is the 
amplitude of the sine function describing the surface. We now compare measurements 
for waves with 2alh = 0.0312 and 0.05 with measurements for 2alh = 0.0125. Dye 
studies with the 2alh = 0.05 wave indicated the existence of a very small region of 
reversed flow close to the solid surface for R e  5 28000, but gave no evidence of a large 
separated region. Consequently, the investigation covered a range of flow conditions 
from those for which a linear response is obtained to those for which a separated flow 
is just being initiated. 

We find that the assumption of linear behaviour becomes invalid at much smaller 
amplitudes than would be suggested from pressure measurements; however linear 
theory is still able to describe many aspects of the flow. For example, it  can be used to 
calculate the first harmonic of the wave-induced flow over the whole range of ampli- 
tudes studied and consequently the approximate magnitude of the shear-stress 
variation. It is also in qualitative agreement with the measured average velocities 
far from the surface. 

Measurements of the pressure variation over sinusoidally shaped waves by Motz- 
field (1937), Bonchkovskaya (1955), Larras & Claria (1960) and by Zagustin et al. 
(1966) indicate a linear response for 2a/h < 0.05, i.e. a sinusoidal variation that is 
approximately 180" out of phase with the wave height. Cook (1970) suggested that 
shear-stress measurements might be a more sensitive test of the applicability of linear 
theory. He used electrochemical methods developed in this laboratory (Mitchell & 
Hanratty 1966; Son & Hanratty 1969) to measure the shear-stress variation along a 
solid wave with 2alh = 0.05 and found a nonlinear response, as well as a reversed flow, 
close to the wave surface. Morrisroe (1970) and later Thorsness (1975) used the 
techniques developed by Cook to measure the shear-stress variation over a wave 
with 2u/A = 0.0125 in order to test solutions of the linear momentum equations. 

In  another series of experiments in this laboratory Zilker (1  976) studied waves having 
height-to-wavelength ratios of 0.0125, 0-0312, 0.05,0-125 and 0.200. In  addition to 
measuring shear-stress variations along the wave surface, he also measured the time- 
averaged and fluctuating velocities above the wave surface using a split hot-film sensor 
and obtained qualitative information about the flow field by studying the motion of 
injected dye. This paper summarizes the results obtained by Cook and by Zilker for 
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their waves with 2a/h = 0.0125, 0.0312 and 0-05. Zilker's measurements for 
2a/h = 0.125 and 0.200 revealed large separated regions in the flow field and will be 
discussed in a later paper. 

2. Linear analysis 

co-ordinates as 

where a is the amplitude and a the wavenumber. The measurements reported in this 
paper are the pressure pw and shear stress T~ along the wave surface and the com- 
ponent U of the velocity field in the x direction. For a linear system the spatial variation 
of these quantities is given by 

The profiles of the wave surface that were studied are represented in Cartesian 

y, = a cos (ax), (1) 

Tw = ?,+al+l cos(ax+e7), (2) 

pw = alfil cos(ax+8,), (3) 

(4) V ( Y  -y,) = U(Y)+alO(Y-Y,)I cos(ax+8,). 

The average shear stress Tw and average velocity D( Y )  over one wavelength are what 
would be measured if the wave were replaced by a flat surface. It is to be noted that 
the location in the flow field is given relative to the wave surface so as to be consistent 
with the manner in which measurements were made. The amplitudes and phases of 
pw, T~ and U are to be determined from the linear momentum equations. 

A number of solutions have appeared in the literature. Helmholtz (1868) neglected 
the viscous and the Reynolds-stress terms and assumed that the average velocity 0 is 
constant. A pressure variation at the wave surface is then obtained which is 180" out 
of phase with the wave. Benjamin (1959) included the effect of viscous terms and took 
account of the variation of the average velocity in his quasi-laminar analysis. For 
a solid wave he predicted a shear-stress profile at  the wave surface with a maximum 
upstream of the crest and a pressure profile with a minimum downstream of the crest. 
More recent solutions of the linear equations have involved attempts at modelling 
the Reynolds-stress terms. A summary of the results obtained by Thorsness (1975) 
from his evaluation of a number of approximations of the Reynolds stresses will now 
be presented. 

Thorsness formulated the problem in a boundary-layer co-ordinate system in which 
the x direction is parallel to the wave surface and the y direction perpendicular to it. 
Velocities were made dimensionless with respect to a friction velocity u* = (Tw/p)l and 
lengths with respect to the ratio v/u* of the kinematic viscosity to the friction velocity. 
The stream function 

Y = jou U ( y )  - dy  + aF( y) eiaz ( 5 )  

is defined such that the wave-induced velocity components in the x and y directions 
are given by 

where h, and h, are the linearized metric functions for the boundary-layer co-ordinate 

u = h;l aY/ay, v = - h,-l w p x ,  (6) 

system : 
h, = 1+aa2yeiax, h, = 1. (7)  
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From the x and y momentum balances the following equation is obtained for F :  

ia[g{F” - a2F} - 0°F  + a2B2] = [FlV - 2a2F“ + a4F + 2a2P - a4U] + 9%’. ( 8 )  

The terms on the left-hand side are the inertia terms associated with the wave-induced 
flow, with a282 representing a centripetal acceleration associated with the use of 
a curvilinear co-ordinate system. The terms in the brackets on the right side arise 
because of viscous stresses. The term 9%’ contains the wave-induced variation of the 
Reynolds stresses rxx and ryy: 

9%’ = ia3rxx + 3ar& + iU(PL, - Pu*) + a:2Pxu + Ply. (9) 

Equation (8) is to be solved subject to the boundary condition of zero velocity at  the 
wave surface, 

and the condition of parallel flow far from the surface, 

F = F ’ = O  at y=O,  (10) 

F = g ,  F’ = U’ a t  large y. (11) 

From the solutions the wall shear stress and pressure can be calculated since at y = 0 

pw = ( - ai/a) [F”’(O) + a20‘(0)] eiax, 

T~ = ‘iw + aF”(0) eiax.  

(12) 

(13) 

The reconstruction of the velocity field from the calculated u(y) is discussed in the 
thesis by Zilker (1976). This requires the recognition that the solution may be visualized 
as a matching of a solution in boundary-layer co-ordinates to one in Cartesian co- 
ordinates a t  a distance yn from the surface where viscous and turbulent stresses are 
negligible. Thorsness (1975) found that the viscous and turbulent stresses are important 
only very close to the boundary and that over most of the region covered by the wave- 
induced flow the inertia terms on the left side of (8) are dominant. For very large values 
of a: the quasi-laminar assumption of Benjamin (1959), W = 0, gives good results. 
For a: -+ 0 the pressure variation is given by Kelvin-Helmholtz theory and the shear- 
stress variation by a pseudo-steady-state assumption. There is a large intermediate 
range of a for which the calculation of the wave-induced flow depends critically on 
how the Reynolds stress is modelled. 

Thorsness (1975) found an approach used by Loyd, Moffat & Kays (1970) to be 
useful for this purpose. They neglected the effect of the normal stresses r,, Pxx and Puv 
and used an eddy-viscosity concept to model rxu: 

Here s i ,  is the average eddy viscosity, a$, eiax the wave-induced variation, and exy 
a component of the rate-of-strain tensor. The van Driest mixing-length equation 
indicates that 

and 

for an equilibrium flow. The term K is the von Kbrm&n constant and -y7,$/A is 
a damping factor which allows for the rapid decrease in the mixing length in the viscous 
wall region. The thickness of the viscous wall region is governed by the magnitude 

v& = Z212exvl ( 15) 

I = ~ y [ l - e x p ( - y ~ & ~ ) ]  (16) 
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of 7kr/A. According to Loyd et al. (1970) the term A is a function of the pressure 
gradient. In  an equilibrium flow A ,  and therefore the thickness of the viscous wall 
region, increases in regions of favourable pressure gradient and decreases in regions of 
unfavourable pressure gradient. 

For flow over a wavy surface the induced variations in pressure and wall shear stress 
can cause variations in 7w and A along the wave surface. If the response of the turbulent 
boundary layer were instantaneous 

7w = 1 +af,eiax (17) 

and A = + ak,Bia@, eiax (18) 

couId be substituted into (16), where 3 is the value of A for a flat wall and k, is a pra-  
meter representing the influence of the pressure gradient on A for an equilibrium dow. 
Loyd et al. (1970) argue that the response would not be instantaneous, so that relaxa- 
tion should be considered. Therefore 

and 

ak, a i a b  eZos 

1 + iak,, 
A = A +  

are introduced into (16) rather than (17) and (18). The following equation for 9, is 
obtained for small amplitude waves: 

_ -  D, - F + a 2 F  -a2D+ (2exp ( -  "2)) y 
D' I-exp (y/& Z YT 

- 

( F ( 0 )  k,Aia@) 
2(a+iakL,) 1 +ik,,  ' 

The correlations presented by Loyd et al. (1970) suggest that K = 0.41, = 25, 
k, = - 30, k,, = 3000 and k,, = 0. Thorsness found that somewhat better agreement 
with measurements of wall stress could be obtained using k,  = - 60, kLp = 3000 and 
kL, = 0. This is referred to as model D in the thesis by Thorsness. 

3. Description of experiments 
The jlow loop 

The experiments were conducted in the flow loop sketched in figure 1. The 8.38 m 
rectangular channel through which the electrolyte was circulated had inside dimen- 
sions of 5-08 em by 60-96 em. The inlet to the channel was preceded by a 91-4 ern long 
round-to-rectangular diffuser section and a 7.6 em long honeycomb contained in the 
15.24 cm pipe at the inlet to the diffuser. 

The honeycomb was constructed by taking a 20.3 em diameter piece of Plexiglas 
and drilling 1.27 em diameter holes in it as close together as possible. Each hole was 
countersunk, thus presenting only sharp edges to the approaching flow. The end result 
simulated a tube bundle in a closely packed arrangement with each tube having 
a length-to-diameter ratio of six. A calming section consisting of 53.4cm length of 
15.2 ern pipe was placed between the honeycomb and the diffuser. 

2 F 1 . M  82 
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FIGURE 1 .  Rectangular channel flow loop. 

The test section was located at the downstream end of the rectangular channel. The 
bottom portion consisted of a removable 60.96 cm by 68.58 cm test plate which con- 
tained the waves to be studied. 

Preliminary tests were conducted with a flat surface in the test section to see how 
closely the flow approximated fully developed channel flow. Velocity measurements 
made a t  yu*/v 2 30 by Zilker (1976) for large flow rates exhibit the logarithmic 
behaviour 

suggested by Kline, Morkovin & Cockrell (1969). 
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The orifice plate used to measure flow rates was calibrated by integrating these 
velocity profiles. A bulk velocity V, is defined as if the velocity profile a t  the centre of 
the channel existed over the whole cross-section: 

where h is the half-width of the channel and is the average velocity at a distance y 
from the test surface. The Reynolds number used to characterize the flow is then 
Re = hU,/v. 

Thorsness (1975) measured the wall shear stress Tw on a flat plate using the electro- 
chemical techniques to be described later in this section. From these he calculated the 
skin-friction factor 

f = ?w/$pug. (24) 

As may be seen in figure 2 these compare reasonably well with values obtained 
in a number of other laboratories using pressure-drop measurements in the fully 
developed region. 

The wave sections 

Five different wavy test surfaces with 2alh values of 0.0125, 0.03125, 0.05, 0.125 and 
0.200 were constructed from Plexiglas. All of these had ten crests separated by a dis- 
tance of 5-08 em. Different methods were used to fabricate the wave surfaces. Those 
with 2 4 h  = 0.05 and with 2a/h = 0.200 are described by Cook (1970) and by Zilker 
(1972). The method used for the other three wave surfaces was found to be superior 
from the viewpoint of controlling wave dimensions and will be described here. 

A wave-surface cutting tool covering one wavelength was constructed using 
a vertical end mill which was moved an appropriate distawe in the vertical direction 
while progressing incremental distances in the horizontal direction as small as 
0.00254 cm. The radius of curvature of the end mill and the radius of curvature of the 
surface were input parameters to a tool design program. The output from this program 
was used by the machinist to make the correct moves along the sinusoidal tool profile. 
Four of these tools were then placed in a rotary-cutter assembly and used in a manner 
described by Cook (1970). Wavy surfaces produced from these high precision tools 
required little finishing work. This consisted merely of smoothing the surfaces with 
progressively finer grades of sandpaper and polishing with DuPont 086lN Rubbing 
Compound and DuPont 076 1N Polishing Compound. 

The wavy sections were constructed such that the mean wave height was in the same 
plane as a flat channel section over which the preliminary measurements were made. 
Holes were drilled in the surface for platinum wires of various diameters used in the 
shear-stress measurements and for pressure taps. After the electrodes had been glued 
in place with epoxy cement the surfaces were repolished as described above. 

Shear-stress measurements 

The wall shear stresses along the wave surface were measured by an electrochemical 
method which is the mass-transfer analogue of the constsnt-temperature hot-film 
anemometer. A chemical reaction occurs on an electrode embedded flush with the 
surface of the wave. The voltage on the electrode is so adjusted that the rate of 

2-2  
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chemical reaction is large enough that the concentration of reacting species on the 
surface of the electrode is constant and equal to zero, i.e. the reaction rate is mass- 
transfer controlled. The current I flowing in the electrochemical circuit is then related 
to the mass-transfer coefficient K and the concentration C, of the reacting species in 
the bulk fluid through the equation 

K = I/&AC,, (25) 

where n is the number of electrons involved in the reaction, 9 is Faraday’s constant 
and A is the area of the electrode. For a two-dimensional flow over a circular electrode 
surface Jolls & Hanratty (1969) have shown from a solution of the mass balance 
equation that the wall shear stress 7w is related to K by the equation 

where ,u is the viscosity of the fluid, D the diffusion coefficient for the reacting species 
and L, the equivalent length of the electrode, equal to 0.816 times the diameter of the 
electrode. The assumptions made in the derivation of (26) are that molecular diffusion 
in the lateral direction and in the direction of flow can be neglected and that the velocity 
field within the Concentration boundary layer is given by 

= (7WlP)Y. (27) 

The neglect of molecular diffusion in the lateral direction compared with that in the 
direction perpendicular to the electrode surface requires that the thickness of the 
concentration boundary layer on the electrode surface is small compared with the 
width of the electrode. This is well justified for the experiments reported in this 
paper, for which this ratio is 0.036. Molecular diffusion in the direction of flow can be 
neglected provided that the group 7w 4 / p D  is small. From discussions presented by 
Dimopoulos & Hanratty (1968) we conclude that errors associated with the neglect of 
diffusion in the flow direction and with assumption of a velocity profile of the form (27) 
can be significant only in some very small neighbourhood of a separation or a reattach- 
ment point. This follows since the concentration boundary layer over the test electrode 
is so thin, about 0.046 times the thickness of the viscous sublayer for the experiments 
reported in this paper. 

Since (26) was derived for a two-dimensional flow its application to a turbulent flow 
requires that the transverse component 7; of the fluctuating stress is small compared 
with the time-averaged stress Tw. If the transverse fluctuating component can be 
neglected then 

where C is a proportionality constant. Then, if it is assumed that ( T ; / ; ? ~ ) ~  < 7;/Tw,  
the right side can be expanded to give 

I = C(TW + 7 3 ,  (28) 

1 = C?&, (29) 

( I  - r,p = C&7&. (30) 

Another approach is to measure the cube of the current. Then 
- - 
1 3  = C3Tw, 1 3 - 1 3  = c37;. (311, (32) 
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Viscosity (P) 
Density (g/cma) 
Kinematic viscosity (cm2/s) 
Mass diffusivity (cm*/s) 
Schmidt number 
KI concentration (molesll) 
I, (I;) concentration (molesll) 
Temperature ("C) 

0.0087 
1.023 
0.00867 
1.146 x 
766 
0.103-0.2 
0.00135-0.00145 

25.0 

TABLE 1. Physical and chemical properties of the electrochemical solution. 

The application of (29) then implies that the fluctuations are small enough that 1 3  = 
For circumstances under which the above condition is not satisfied it is quite likely 
that the neglect of the influence of the transverse component of the fluctuating stress 
is also not justified. From dye studies to be described later and from a comparison of 
measurements of f3 and we conclude that the presence of large transverse velocity 
fluctuations prevents accurate measurements of the wall shear stress in the neighbour- 
hood of a separation point or in a region where a separated zone of large dimensions 
exists. 

The redox reaction used in this study is the potassium iodide and iodine reaction 
system, in which the following reactions occur: 

I; + 2e--t 31- (cathode), 

31-+I;+ 2e- (anode). 

The approximate concentrations of the 1, and the potassium iodide supporting electro- 
lyte were 0 . 0 0 1 5 ~  and 0 . 2 ~  respectively. The properties of the electrolyte are 
summarized in table 1.  The diffusion coefficients for the iodine to be used in (26) were 
calculated from a correlation developed by Shaw (1976): 

10gloD = 1.07291 loglo v - 7.15278, (33) 

where v is the kinematic viscosity. 
Local time-averaged shear stresses were obtained by using 0.051 cm diameter 

platinum wires located every 0.254 cm in the direction of mean flow while 0.0102 cm 
electrodes were used to measure the local root-mean-square value of the fluctuating 
shear stress. The diameter of the electrodes used for fluctuating measurements was 
small enough that according to considerations presented by Shaw (1976) no spatial 
averaging occurred on their surfaces. 

Figures 3 and 4 show the locations of the electrodes in the wave surfaces with 
2alh = 0.03125 and with 2a/h = 0.05. The paper by Thorsness (1975) shows the 
electrode arrangement for the 2a/h = 0.0125 wave. The platinum wires were glued in 
place with epoxy cement and sanded flush with the surface using the procedure 
outlined in the previous section. These electrodes were the cathode of an electrolysis 
cell. The anode consisted of an approximately 1000 cm2 nickel sheet completely 
immersed in the solution. The much smaller area of the cathode surface ensured that 
the current flow was controlled by processes occurring at the test electrode. 

Considerably more detail about the electrochemical techniques used for these 
measurements can be found in a number of previous publications from this laboratory. 
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FIGURE 3. Electrode configuration on 2a/h = 0.0312 wave surface. 

Mitchell & Hanratty (1966), Hanratty (1967) and Sirkar & Hanratty (1970) have 
described their use to measure the fluctuating wall velocity gradient for fully developed 
turbulent flow in a pipe and Son & Hanratty (1969) and Dimopoulos & Hanratty 
(1968) their use to study flow around a cylinder. Fortuna & Hanratty (1971) have 
analysed their frequency response. 

Measurement of pressure projiles 

The time-averaged pressure profile along the wave surface with 2alh = 0.05 was 
measured using the pressure taps shown in figure 4. These 0.084cm diameter holes 
were drilled in three groups of twenty along the waves on which electrochemical 
measurements were made. The holes were enlarged to 0.325 cm on the back side to 
accommodate stainless-steel tubes which were connected to a CGS Datametrics 
Model 550-5, 0-10 psid differential pressure transducer. 
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FIGURE 4. Electrode and pressure-tap configuration on 2a/h = 0.05 wave surface. 

Measurement of flow direction 

The electrode measurements gave only the magnitude of the shear stress. Since 
reversed flows existed close to the surface of the 2a/h = 0.05 wave, independent 
experiments had to be performed to determine a sign for the shear stress. One of these 
involved the injection of dye through the pressure taps. The other used the sandwich 
electrodes developed by Son & Hanratty (1969) to determine the separation point for 
flow around a cylinder. 

These consisted of two rectangular electrodes sandwiched together with a thin layer 
of insulation and mounted in the wave surface with their long side perpendicular to the 
direction of mean flow. The difference in the signal from the two electrodes indicates 
the flow direction, since a smaller mass transfer rate is registered by the downstream 
electrode. 

The procedure followed in using these electrodes was to activate each electrode 
individually and record its average current. Then both electrodes were activated 
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simultaneously and their currents recorded. The flow direction was determined by the 
electrode which had the largest percentage change in the electrochemical cell current 
between the two above conditions. 

Velocity measurements 
Measurements of the average velocity and the root-mean-square values of two com- 
ponents of the turbulent velocity fluctuations were obtained over a flat surface and 
over the wave surfaces using a Thermo-Systems, Inc., 1287-EW split film sensor. The 
probe was operated in the constant-temperature mode using a Thermo-Systems 
Model 1050 anemometer module and a Thermo-Systems Model 1051-6 power supply 
module. In  this paper we report only on the average velocity measurements. 

The probes were calibrated using the towing tank and the liquid jet facility described 
in the thesis by Zilker (1976). The calibration data were analysed using a method 
suggested by Blinco & Sandborn (1973). 

The probe was attached to a traversing mechanism which entered the channel from 
its top surface. Provisions were made to position the traversing mechanism at ten 
different locations between the eighth and tenth wave crests. The positions from 0 to 
0*4x/h were located every O.lx/h from the eighth wave crest. The remaining traversing 
positions from 0.5 to 0*9x/A were similarly located along the ninth wave. At each 
location the probe was traversed until its boundary protection pins touched the wavy 
surface, which established the split hot-film probe’s exact location above the surface. 
The probe’s sensors were then activated, and two minutes of analog probe data were 
recorded using a Sangamo Model 3600 14 track F M  tape recorder. This procedure was 
repeated as the probe was moved away from the solid boundary. Data from the split 
hot-film probe were subsequently analysed by an IBM/1800 computer which sampled 
each segment of analog data, converted these samples to 16 bit digital numbers, and 
then processed these digital data to obtain the required velocity-field information. 

4. Results 
Characterization of the JEow 

The goal of the experiments was to study flow over a portion of a wave train where 
a periodic pattern existed. This did not pose a serious problem since the flow established 
itself rather rapidly. 

Cook (1970) carried out preliminary pressure measurements over a train of 24 waves 
with 2a/h = 0.05. As can be seen in figure 17 of his thesis no difference could be found 
between pressure distributions over the sixth and fourteenth wave. A more sensitive 
test is obtained from the profiles of wall shear stress. 

Zilker (1976) carried out measurements of the wall stress profile over the first, 
second, fifth, sixth, ninth and tenth waves of a train of ten waves having a height-to- 
length ratio of 2a/h = 0.0312. No significant change in the shear-stress profile could be 
discerned after the second wave. 

Profiles of wall shear stress 
Measurements of the variation of the shear stress along waves with 2alh = 0.03125 
and with 2a/A = 0.05 are shown in figures 6 and 7. Local average shear-stress data for 
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av/u* = 0.00303, au*/v = 51.9. ( c )  Re = 6020, av/u* = 0.00856, au*/v = 18.3. 

the 2a/h = 0.05 wave were plotted as positive or negative depending on the flow 
direction determined from the studies outlined in the previous section. For comparison 
one of the profiles obtained by Thorsness with a 2a/h = 0.0125 wave, for which a linear 
response is obtained, is shown in figure 5. 

The abscissae of these figures are the ratio 7w/(7w), where 7w is the local wall shear 
stress and (7w) is the average over one wavelength. The curves are plots of the function 

N ( 2 7 )  +bncos (27) - * = ansin - 
(Tw) n=O 

(34) 

with N = 1 or 2. 
Figure 5 shows that the measurements for 2a/h = 0.0125 are fitted quite well by 

a curve with a single harmonic which is 51" out of phase with the wave profile. Of 
particular interest is the large amplitude of wall stress variation obtained with such 
a small wave. 

An increase in the wave amplitude to 2a/h = 0-0312 (figure 6) causes an observable 
departure from a linear response in the wall shear-stress variation. This is evidenced 
by a more gradual variation of the wall shear stress on the leeward than on the wind- 
ward side of the wave. The degree of departure from linear behaviour is found to 
increase with increasing flow rate. It is noted that some improvement in the fit of the 
data is obtained by using a curve with two harmonics at Re = 31000 and at 
Re = 15200. However, at Re = 7850, where the response is close to linear, not much 
improvement is obtained. 
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2alh Re 
0.0125 30 460 

20 880 
9 680 
5 420 

0.0312 31 010 
22 840 
15220 
7 850 

0.050 31 840 
24 740 
19260 
11940 
6020 

a+ = a v p  
2.12 x 10-9 
2.95 x 
5.84 x 
9.85 x lo4 
1.95 x 
2-54 x lo4 
3.63 x 
6.56 x 
1.95 x lo4 
2-43 x 
3.03 x lo4 
4.62 x 
8.56 x 

a+ = au*Iv 
18.5 
13.3 
6.7 
4.0 

50.5 
38.6 
27.0 
14-9 
80.3 
64.6 
51.9 
33.0 
18.3 

C2ICI 
0.073 
0.059 
0.032 
0.026 

0.261 
0.215 
0.116 
0.064 
0.317 
0.230 
0-184 
0.159 
0.098 

TABLE 2. Harmonic coefficient ratios of wavy-surface shear stress. 

As can be seen in figure 7, an increase in the wave amplitude to 2alh = 0.05 can 
cause an even greater distortion of the shear-stress profile. Regions of reverse flow 
close to the surface are found for Re = 7200 and for Re = 16 100 but not for Re = 32 000. 
These are located on the downstream portion of the wave midway between the crest 
and the trough. 

For all three waves the degree of departure from linearity increases with increasing 
fluid velocity, even though the amplitude of the variation of the wall shear stress 
decreases. This is further illustrated in table 2, where the amplitudes of the harmonics, 
defhed from (34) as 

have been calculated from a Fourier analysis. It is noted that an increase in the magni- 
tude of the second harmonic is obtained by increasing either the wave amplitude or 
the fluid velocity. 

A comparison of table 2 with figures 5-7 indicates that an observable difference 
from a sinusoidal variation is obtained when the Fourier analysis gives C,/C, > 0.1 16. 
Consequently it is concluded that significant departures from linear behaviour occur 
when au+lv 2 27. 

Pressure projiles 
The behaviour of the wall shear-stress profiles observed in this research is of interest 
since previous measurements of pressure profiles indicate a linear response for 
2alh < 0.05. Therefore we carried out measurements of pressure profiles on the wave 
with 2alh = 0.05 for Reynolds numbers from 5650 to 30000 to see whether a linear 
response in the pressure variation is also found in our equipment. One of these measured 
profiles is shown in figure 8. Results from these experiments are consistent with the 
findings of previous investigators in that all of the measured profiles may be fitted 
with a curve having a single harmonic. 

C$ = a3 + b4, (35’) 

InfEuence of wave amplitude on the first harmonic and on (rw) 
The influence of the wave amplitude on the amplitude of the first harmonic of the 
shear-stress variation and on (rw) is shown in figures 2 and 9. The skin-friction 
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FIGURE 8. Pressure distribution over 2u/A = 0.05 wave surface 
at  Re = 15060. -, first harmonic. 

Reynolds number 

FIGURE 9. Magnitude of shear-stress fluctuations as a function of Reynolds number. 
0 ,  2a/h = 0.0114; 0, 2a/h = 0.0125; 0,  2a/h = 0.0312; A, 2a/h = 0.050. 
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coefficients f, = (rw)/&pU% shown in figure 2 for the three waves agree within experi- 
mental error with the measurements obtained with a flat plate. This type of result 
is what would be expected for a linear behaviour. 

Furthor evidence that many aspects of the flow may be described by linear theory 
is given in figure 9, where the amplitude (a4 + b$ of the fist harmonic of the function 
describing the variation of T ~ / ( T ~ )  is plotted. The relative magnitudes of the first 
harmonics for the two larger amplitude waves indicate a linear dependence on a, as 
shown by the two solid lines. The extrapolations of this linear relation to the waves 
with 2a/h = 0.0114 and with 2a/h = 0.0125 are given by the two broken lines in 
figure 9. Approximate agreement is noted. In fact the differences are of the magnitude 
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which would be expected for errors in the measured amplitude of the wave surface 
of 0.00508 cm. 

Velocity measurements 

The measured velocity profiles at  different locations along the wave surface are shown 
in figure 10 for a wave with 2a/h = 0.06. The abscissa in these curves is the distance 
above the wave surface at that location. The velocity is the time-averaged velocity in 
the direction of mean flow. For comparison, data obtained with a flat plate a t  a bulk 
velocity of 25 cm/s are also shown. It is noted that in the neighbourhood of the wave 
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FIGURE 11 (a). For legend see next page. 

crest the shape of the velocity profile is similar to that for a flat wall but that in the 
trough region profiles with shapes quite different from those for a flat plate are 
obtained. 

5. Comparison of the measurements with calculations based on linear theory 
The remarkable qualitative agreement of many of the aspects of our experimental 

results with what would be expected for a linear response suggested that we make 
a quantit,ative comparison. For this purpose we used the model for the wave-induced 
variations of the Reynolds stresses developed by Thorsness (1975) and discussed in 9 2 .  

The curves shown in figures 11 ( a )  and ( b )  are the calculated amplitude and phase 
of the wall shear-stress variation. Here the first harmonic of 17w-(7w))/(7w) has 
been normalized with the dimensionless wave amplitude au*/v and plotted against the 
dimensionless wavenumber av/u*. The solid curves shown in figure 10 are the velocity 
profiles calculated from linear theory. The agreement between calculations and 
measurements is within the accuracy that can be expected from the approximate 
model of the Reynolds stresses developed by Thorsness (1975). 

Thorsness also compared a solution of the linear momentum equations using his 
model D for the Reynolds stress with pressure profiles and obtained agreement with 
measurements for 2a/h Q 0.06. 

Consequently we conclude that a good approximation of the pressure variation, 
the velocity field outside the viscous wall region and the first harmonic of the shear- 
stress variation for waves on which there is not a large separated ragion can be obtained 



60  D.  P. Zilker, G .  W .  Cook and T .  J .  Hnnratty 

' O  n * " 
0.001 0.005 0.01 

a+ = av/u' 

FIGURE 11 .  Comparison of model D with (a) experimental magnitude of shear-stress variation and 
( b )  experimental shear-stress phase angles. -, model D ;  0 ,  2a/h = 0.0114; 0, 2a/h = 0.0125; 
0. 2a/h = 04312;  A, 2a/h = 0.050. 

by a solution of the linear momentum equations. However, it should be pointed out 
that the agreement between calculations and measurements does not provide a con- 
firmation of the model of the wave-induced Reynolds stresses used by Thorsness. It is 
quite likely that other models would also provide the type of agreement between 
linear theory and presently available measurements shown in this paper and the 
thesis by Thorsness (1975). In  fact, Thorsness has discussed this matter in great detail 
and has shown that the use of his model D with constants k,  = - 30, kLP = 1500 and 
kL, = 0 gives results very close to the ones presented in this paper. 

This work was supported by the National Science Foundation under Grant NSF 
ENG 71-02362. 
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